

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH AND APPLIED SCIENCES

DEPARTMENT OF HEALTH SCIENCES

QUALIFICATION: BACHELOR OF ENVIRONMENTAL HEALTH SCIENCES BACHELOR OF HEALTH INFORMATION SYSTEMS MANAGEMENT **BACHELOR OF MEDICAL LABOLATORY SCIENCES BACHELOR OF HUMAN NUTRION QUALIFICATION CODE: 08BEHS** 07BHIS LEVEL: 5 08BMLS 08BOHN **COURSE CODE: HSP511S COURSE NAME:** HEALTH SCIENCE PHYSICS **SESSION: JULY 2019 PAPER: THEORY DURATION: 3 HOURS**

SUPPLEMENTARY/SECOND OPPORTUNITY PAPER				
EXAMINER(S)	MR. VAINO INDONGO			
MODERATOR:	PROF DIPTI R. SAHU			

MARKS: 100

	INSTRUCTIONS	
1.	Write all your answers in the answer booklet provided.	
2.	Read the whole question before answering.	
3.	Begin each question on a new page.	

PERMISSIBLE MATERIALS

1. Scientific Calculator

THIS QUESTION PAPER CONSISTS OF 6 PAGES

(INCLUDING THIS FRONT PAGE)

SECTION A

QUESTION 1				[40]
Suggested Que	stion Types: Multiple (Choice/Objectives		
Each question i	n this section carries t	wo marks		
1.1 The dimens	ion of volume is given	by;		(2)
AL ³	B. L ² T ²	C. dimensionless	D. MLT ⁻¹	
1.2is	the unit of force .			(2)
A. W	B. Hz	C. N	D. NS	
1.3 One of thes	e is the dimension of a	cceleration.		(2)
A. ML ²	B. ML ² T ⁻¹	C. M ² T ²	D. M ^o L T ^{- 2}	
1.4 One of the t	following is an example	e of a scalar quantity.		(2)
A. force		. magnetic flux		
C. mass	L	D. electric field intensity		
1.5 A car moves	s around a circular trac	k with a constant speed.	Which of	
the followin	g statements are true o	concerning this motion?		(2)
	erage speed is zero. etal force is towards th	on contro of the circle		
	celeration is zero.	ie centre of the circle.		
A. only I is t		B. only II is true		
C. only III is	true	D. both II and III are true		
_		starts from rest and acce	lerates uniformly	
in a straight	line at 3 m/s ² to cover	a distance of 14 m?		(2)
A 150s	B 30 5 s	C 985	D. 3.1 s	

1.7	.7 A soccer ball, at rest on the ground, is kicked with and initial velocity of 12 m/s at a launched angle of 35° to the horizontal plane. Determine its time to reach the top accent, assuming that its air resistance is negligible.				
	A. 0.5 s	B. 1.0 s	C 1.7 s	D. 0.7 s	
1.8	Power is measured in:				(2)
	A. W s ⁻¹	B. W	C. m/s	D. W ²	
1.9	One of these statements	s is not true for	Universal gravitatio	n constant, G.	(2)
B	it is a constantacceleration due to grait is a scalar quantityUse Boyle's meter invo	_	cts to determine		
1.10)is a method of o	determining ac	celeration due to gra	avity, g.	(2)
	A. Spring balanceB. Simple pendulum invC. Intrinsic method.D. Beam balance	olving one obj	ect.		
1.1	1 Determine the density a mass of 37.3 g.	of copper if a c	opper ball with radi	us 1 cm has	(2)
	A. 7.77 x 10 ³ kg.m ⁻³ C. 8.88 x 10 ³ kg.m ⁻³		B. 44×10^2 g D. 1×10^2 g		
1.12 Calculate the volume of an ice block with mass of 2460 g and density 917 kg/m^3 .				and density	(2)
	A. 2.68 x 10 ⁻³ m ³ C. 19.3 x 10 ⁻³ m ³		B. 3.1 x 10 ⁴ m ³ D. 2.0 x 10 ³ cm		
1.13	A streamline flow is also called				(2)
	A. Laminar flow C. Volume flow		B. Turbulent flow D. Bernoulli's flow		

1.14	4 A steel bar is precisely 1.60 m at 25° C. Its length is then increased to 1.64 m? Determine its initial temperature in Kelvin.					(2)
	A.	273	B. 198	C. 25	D. 298	
1.15 When a liquid freezes to become a solid:						(2)
		absorbs energy temperature decr	eases	B. its temperature in D. it emits energy	creases	
1.16	1.16 How much heat is required to raise the temperature of a 0.04 kg stainless steel cup from 20°C to 50°C if the specific heat capacity of stainless steel is 0.50 kJ / kg.°C.					(2)
	A. 20)O J	B. 400 J	C. 800 J	D. 1000 J	
1.17	·	is a vector that	is tangential to	path of an object in a	a circle:	(2)
		gular force ntripetal velocity		B. centripetal accele D. centripetal force	ration	
An is	sotop		tomic number o	u estions 1.18 – 1.20 . of 92 and mass numbe	er of 238 decays by alpl	na to
1.18		t would be the nun ectively?	nber of neutror	ns and protons in the I	parent nuclide X,	(2)
		and 238 6 and 238		B. 238 D. 146 and 92		
1.19	Dete	rmine the atomic r	number of the o	daughter nuclide Y?		(2)
	A. 92 C. 14			B. 90 D. 234		
1.20 The difference between a helium nucleus and alpha particle is that;					(2)	
	A. n	umber of neutrons	varies			
	B. number of protons varies					
	C. no electrons on the alpha nucleus					
	D. N	None of the above				

SECTION B

QUESTION 2	[20]
DIMENSIONS	
2.1 Derive the dimensions of:	
(i) Gravitational potential energy	(3)
(ii) Pressure	(3)
(iii) Momentum	(3)
(iv) Universal gravitational constant	(3)
2.2 The force F of the wind on the car is certainly affected by the speed v of the car,	
density $\boldsymbol{\rho}$ and the surface area A of the car directly exposed to the wind's direction.	
Use dimensional analysis to show the equation of force.	(8)
QUESTION 3	[20]
VECTORS AND SCALARS, ONE AND TWO DIMENSIONAL MOTION	
3.1 Use the scalar product to determine the angle between the two vectors.	(5)
$\bar{\mathbf{A}} = 2 \mathbf{i} - 2 \hat{\mathbf{j}} + \mathbf{k}$ and $\bar{\mathbf{B}} = -4 \mathbf{i} + 2 \hat{\mathbf{j}} - 3 \mathbf{k}$	
3.2 Given that: $\overline{A} = -1 + 2 \hat{\jmath} - 2 \hat{k}$, find the magnitude of \overline{A} , and the unit vector in the direction of \overline{A} .	(3)
3.3 Show the derivation for the expression $v^2 = u^2 + 2as$:	(4)
3.4 A passenger plane accelerated to rest down a runway at a constant deceleration of 2 m.s ⁻² .	
3.4.1 Determine the velocity and position of the plane 8 seconds after it comes to a complete stop.	(4)
3.4.2 A car moves from rest with and acceleration of 0.9 m/s/s. Find its velocity when it moved a distance of 42.3 m.	has (4)

QUESTION 4 [20] WORK, ENERGY AND POWER, CIRCULAR MOTION, SIMPLE HARMONIC MOTION AND UNIVERSAL GRAVITATIONAL AND RADIOACTIVITY 4.1 Determine the work done when an object of mass 7.5 kg falls vertically at a height of 4 (3)4.2 Show that power is equal to the product of force and velocity. (3)4.3 A CD starts from rest and accelerates to an angular frequency of 3 rev/s. Determine the disc's average period T and centripetal velocity V_c of the edge of the a disc when the radius is 4.0×10^{-2} m. (4)4.4 A spacecraft of mass 450 kg land on planet Jupiter. Calculate Jupiter's gravitational acceleration, g, on the spacecraft. [Take mass of Jupiter = 1.89 x 10^{27} kg, radius of the Jupiter = 6.99 x 10^{-7} m, G = 6.67 x 10^{-11} Nm 2 kg $^{-2}$]. (4)

END

(4)

(2)

4.5 Mention and discuss any two chief sources of radiation in our environment.

4.6 Mention any two industrial applications of radiation in agriculture.